

Novodvorska 994, 142 21 Praha 4, Czech Republic

Tel. (+420 2) 4404 3478, Fax: (+420 2) 4149 2691, E-mail: info@asicentrum.cz

BASIC PARAMETERS

- configurable fixed point FFT processor
- DSP processor architecture
- 2's complement arithmetic
- multiplication by window-weighting function available (rectangle, Gaussian α , Von Hann, Kaiser α and others)
- configurable data and coefficient widths
- configurable precision and output scale ability
- FFT algorithm specified by program in internal ROM
- coefficients stored in internal ROM

Optional enhancement

CORDIC algorithm to compute magnitude spectrum

FEATURES

Completely synchronous design Technological independence Fully verified according compliance checklist

DELIVERABLES

Design file formats

RTL VHDL synthesisable code

netlist

Technical documentation

Data sheet

Verification tools

Testbench

Application FPGA board

- Constraints files
- Maintenance

DESCRIPTION

Fast Fourier Transform (FFT) is an algorithm to compute Discrete Fourier Transform (DFT) consuming O (N*log₂N) runtime (N - FFT size). DFT transforms time domain to frequency domain using equation:

$$X[k] = \sum_{n=0}^{N-1} x(n) W_N^{kn}$$
 where W N represents "twiddle factors" : $W_N = e^{-j\frac{2L}{N}}$

Filename: ACFFT_EN www.asicentrum.com Printed: 27.2.2002 Tel. (+420 2) 4404 3478, Fax: (+420 2) 4149 2691, E-mail: info@asicentrum.cz

PROCESSOR REALIZATION

Processor uses DIF - RADIX2 algorithm which consists of basic computational elements - the butterflies. Each butterfly has two inputs and produce two outputs by the following equations :

Inputs A, B are divided by 2 to avoid overflow.

The processor consists of Circle Buffer Unit, Address Generator Unit (AGU), ROM with "twiddle factors" (ROMW), ROM with window-function coefficients (ROMK), RAM, Executive Unit (EXU) and Output Interface:

Filename: ACFFT_EN www.asicentrum.com Printed : 27.2.2002

Novodvorska 994, 142 21 Praha 4, Czech Republic

Tel. (+420 2) 4404 3478, Fax: (+420 2) 4149 2691, E-mail: info@asicentrum.cz

FUNCTIONAL DESCRIPTION

Input data are stored in CIRCLE_BUFFER unit, which works as interface between two time domains - write_clk (clocks input data) and clk (system clock). When a sample is read from unit, it is not 'cleared' so that one sample can be read several times. The FIFO (first-in, first-out) rule is observed during reading. If the internal memory is full, the incoming samples overwrite oldest samples. This behaviour provides loading of input data in N-point window.

The macro works in 3 states: LOAD, FFT, LIST. During the LOAD state the data from CIRCLE_BUFFER are loaded and multiplied by window-coefficients. The FFT state computes complex spectra and LIST state send complex spectra out of macro. The LOAD state is started by start_fft signal, FFT state follows immediately, LIST state is started by start_list signal. Complex spectra consists of real and imaginary part.

FFT RUNTIME

The runtime depends on FFT length:

State	Clock cycles
LOAD	$W_L = N + 10$
FFT	$W_F = 2 N log_2(N) + 16$
SAVE	$W_S = N + 4$

Save time is proportional shorter when sending less than N samples out of macro (sending one sample takes 1 clock cycle)

SAMPLE RATE

Due to use of CIRCLE_BUFFER the sample rate could be:

$$f_{write_clk} < \frac{f_{clk}}{2}$$

Let have time of complete cycle FFT:

$$W = W_L + W_F + W_S$$

$$T = W \cdot T_{clk}$$

There is N samples stored in CIRCLE_BUFFER. They represent time interval:

$$T_{CBF} = N . T_{write_clk}$$

The critical sample rate is:

$$f_{write_clk}^* = \frac{N}{W} f_{clk}$$

Three cases of relationship between f_{write_clk} and $f^*_{write_clk}$ can occur :

Novodvorska 994, 142 21 Praha 4, Czech Republic

Tel. (+420 2) 4404 3478, Fax: (+420 2) 4149 2691, E-mail: info@asicentrum.cz

ACFFT PINOUT

Port name	Direction	Description				
CLK	Input	System clock (~50MHz)				
RES	Input	Asynchronous global reset				
WRITE_CLK	Input	Clocks input data				
START_FFT	Input	Starts FFT state				
START_LIST	Input	Starts LIST state				
DATA_IN(WIN-1:0)	Input	Input data				
DONE_FFT	Output	State FFT is done				
DONE_LIST	Output	State LIST is done				
DR	Output	Output data valid				
DATA_OUT_RE(WOUT-1:0)	Output	Output data - real part of complex spectra				
DATA_OUT_IM(WOUT-1:0)	Output	Output data - imaginary part of complex spectra				
FLAGS(7:0)	Output	Test bits				

CORE PARAMETERISATION

ACFFT allows easy modification according customer's need:

- input and output data width
- selection of window-weighting function
- coefficient precision (both "twiddle factors" and window-weighting function)
- RAM width

This modification is provided by ASICentrum:

• custom instructions may be included

The list of generic parameters:

Generic	Туре	Description
m	Integer	2 ^m - point FFT
win	Integer	input data width
wout	Integer	output data width
wram	Integer	internal RAM width
wromw	Integer	"twiddle factors" width
wromk	Integer	window-weighting function coefficients width

TECHNOLOGY SPECIFIC ISSUES

Core is implemented as fully synchronous synthesizable RTL VHDL code including RAM.

Novodvorska 994, 142 21 Praha 4, Czech Republic Tel. (+420 2) 4404 3478, Fax: (+420 2) 4149 2691, E-mail: info@asicentrum.cz

FPGA IMPLEMENTATION OVERVIEW

FFT size	Generics			Device	System Frequency	Runtime (LOAD+ FFT)	Utilization	Block RAM utilization	Equivalent Gates		
[points]	win	wout	wram	wromw	wromk		[MHz]	[µs]			
256	12	12	30	10	7	XC2S50-5PQ208	58.9	74.4	82 %	3 of 8	62 992
						XCV50-4CS144	54,5	80.4	88 %	3 of 8	63 031
512	12	12	30	11	7	XC2S50-5PQ208	56.5	172.8	90 %	6 of 8	113 166
						XCV50-4CS144	55.0	177.4	96 %	6 of 8	113 222
1024	12	12	30	12	7	XC2S150-5PQ208	56.1	384.0	46 %	11 of 12	197 194
						XCV150-4PQ240	54.8	392.7	49 %	11 of 12	197 194
1024	12	12	32	14	14	XCV200-4PQ240	52.7	408.3	45 %	11 of 14	201 407
2048	12	12	30	13	7	XCV600-4BQ432	49.4	953.1	14 %	21 of 24	363 715

VERIFICATION METHODS

ACFFT core has been tested using functional and post-layout timing VHDL simulation (after FPGA implementation). Both functional and timing testbenchs are available.

APPLICATION

Spectrum analyzer

Filename: ACFFT_EN www.asicentrum.com Printed : 27.2.2002